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Abstract

Detecting multimodal fake news (MFND), where authentic
images are paired with misleading text, remains a signif-
icant challenge. Existing methods achieve high accuracy
but rely heavily on large, fully annotated datasets, limit-
ing real-world scalability. We propose HybridNet, a data-
efficient framework that leverages hybrid active learning to
select the most informative samples, drastically reducing
labeling cost. We also propose a lightweight Reasoning-
Aware Classifier (RAC) for challenging cases, which com-
bines Vision—Language Model (VLM) features with reason-
ing from a Multimodal Large Language Model (MLLM) to
further improve detection performance and provide human-
interpretable explanations. Our hybrid approach com-
bines uncertainty-based bootstrapping with LLM-guided
disagreement to prioritize contextually difficult samples.
We further evaluate HybridNet for cross-dataset generaliz-
ability, demonstrating that it maintains strong performance
across diverse multimodal news corpora. Experiments on
benchmark datasets show that HybridNet achieves compet-
itive accuracy with less than half the labeled data, offering
a scalable and interpretable solution for multimodal misin-
formation detection.

1. Introduction

The field of Multimodal Fake News Detection (MFND) has
become a crucial area of study that addresses one of the
most prevalent types of digital misinformation, which is the
intentionally created pairing of misleading text with authen-
tic images. Research has shown that people are more likely
to accept both true and false statements when they are ac-
companied by images, as photographs not only boost per-
ceived credibility but also drive higher engagement on so-

cial media. This makes the task of MFND especially chal-
lenging, as it requires not only detecting discrepancies be-
tween textual and visual modalities but also capturing the
subtle connections that distinguish carefully crafted misin-
formation from genuine news. In recent years, two major
research directions have emerged to address the challeng-
ing problem of multimodal fake news detection.
Vision-Language Model (VLM) Approaches : The first
direction leverages pre-trained vision—language models,
particularly CLIP [13] based architectures, to achieve mul-
timodal alignment in shared latent spaces. These methods
encode images and accompanying texts into common em-
bedding representations and employ cosine similarity met-
rics with contrastive learning objectives to assess veracity.
Methods like CCN [1], Reddot [10], and FraudNet [11]
have extended this paradigm by introducing advanced atten-
tion mechanisms, cross-modal consistency losses, and fea-
ture fusion strategies to enhance alignment and detection
performance. Despite their computational efficiency and
strong empirical results, VLM-based systems remain lim-
ited by their “black box” nature, offering little interpretabil-
ity into how predictions are made. This lack of explainabil-
ity makes it difficult to implement in the real world, partic-
ularly when moderators and human fact-checkers need to
know why particular information is flagged.

Multimodal Large Language Model (MLLM)-Based
Approaches: The second major research trajectory in
MEND focuses on MLLM-based methods, which aim to
deliver both robust classification and human-interpretable
explanations, grounded in external evidence retrieval and
reasoning. For instance, SNIFFER [12] is a multimodal
LLM meticulously fine-tuned via a two-stage instruction
tuning process, which first aligns generic visual concepts
with news-domain entities, then trains on GPT-4 [3] gener-
ated out-of-context examples to surpass its base MLLM by
40%.

While MLLM-based methods effectively bridge the ex-



plainability gap left by VLM approaches, they come with
practical challenges. Both training and inference demand
substantial computational resources and time, making them
costly and resource-intensive. Moreover, these methods
struggle with scalability due to the scarcity of datasets with
high-quality explanatory annotations essential for training
models that provide more than binary “fake” or “real” la-
bels.
A common challenge across both methodological directions
in MFND is the heavy reliance on supervised training data.
Building large-scale multimodal datasets with thousands of
annotated samples is costly and labor-intensive, as it de-
mands expert annotation to ensure accuracy and reliability.
To address these challenges, we propose a novel MLLM-
guided active learning framework that reduces data require-
ments while sustaining high detection accuracy and inter-
pretability. The approach leverages uncertainty-based sam-
pling guided by MLLM reasoning to prioritize the most
informative training samples, ensuring efficient annotation
and improved model performance.
Further, to balance explainability with computational effi-
ciency, the framework introduces a secondary lightweight
classifier that learns to approximate MLLM reasoning pat-
terns on selected samples. This dual-component design
enables fast inference while preserving access to detailed,
evidence-based explanations when necessary.
Preliminary experiments show that our method achieves
performance comparable to fully supervised models while
using less than 50% of the training data, reaching 90% ac-
curacy on standard benchmarks. Moreover, the secondary
classifier enhances overall accuracy by exploiting learned
reasoning, making the framework both scalable and practi-
cal for real-world deployment.

The contributions of this work can be summarized as fol-

lows:

1. We propose a sequential hybrid strategy that intelli-
gently combines entropy-based uncertainty sampling
with MLLM-guided disagreement sampling.

2. We introduce a second-stage lightweight classifier that
uses MLLM reasoning to improve performance on hard
samples.

3. Our method demonstrates superior sample efficiency and
robust performance compared to standard baselines us-
ing 100% of training data.

4. We show that our framework generalizes effectively
across datasets, maintaining strong performance even
when applied to new, unseen multimodal news corpora.

2. Related Literature

The primary objective in Multimodal Fake News Detection
(MFND) is to develop models that can accurately verify
the consistency and veracity of an image-caption pair. The
prominent benchmark for this task is the NewsClippings[8]

dataset, which consists of real-world news articles where
fake samples are synthetically generated by pairing a gen-
uine image from one article with a caption from another,
creating a subtle but malicious semantic mismatch.

LLMs in Multimodal Fake News Detection Early ap-
proaches have leveraged Vision-Language Models (VLMs),
particularly based on CLIP [13], to solve this classifica-
tion task. Models such as CCN [1], Reddot [10], and
FRAUD-Net [11] have built upon this, which project im-
ages and query captions into a shared embedding space.
These methods introduce mechanisms like evidence fusion,
cross-modal attention, and domain-aware classifiers to im-
prove alignment verification. However, their black-box na-
ture limits interpretability. To address this explainability
gap, a second line of research has focused on MLLMs.
For instance, SNIFFER [12] is a two-stage fine-tuned In-
structBLIP [5] model, which is trained on GPT-4 [3] gen-
erated data to both detect fake news and generate explana-
tory statements. While effective at providing reasoning,
such models introduce significant practical challenges. The
training and inference of these large models demand sub-
stantial computational resources, and they rely on a large
scale of annotated reasoning data, which is both costly and
labor-intensive to create.

Active Learning A machine learning paradigm that re-
duces labeling cost by selecting the most informative sam-
ples under limited budgets [14, 15]. Traditional query
strategies rely on model uncertainty or data diversity [7].
Uncertainty-based methods, such as Least Confidence,
Margin, and Entropy [6], label samples where the model
is most confused, but face a ’cold-start” issue [4], as models
trained on tiny initial sets provide unreliable uncertainty es-
timates. MHPL (Minimum Happy Points Learning) [18]
addresses this in source-free domain adaptation by select-
ing neighbor-chaotic, diverse, and source-dissimilar sam-
ples, jointly modeling uncertainty, diversity, and exploita-
tion. This consistently outperforms standard AL baselines,
highlighting the benefit of going beyond classic heuristics.

LLMs in the Active Learning Loop Recent work ex-
plores using pre-trained LLMs to enhance AL query strate-
gies [19]. ActiveLLM [4], for example, employs an
instruction-tuned LLM to select samples from unlabeled
pools, mitigating cold-start and outperforming traditional
methods. However, its internal selection logic remains
opaque, making it a ”black box.” In contrast, we introduce a
hybrid AL strategy for MFND that leverages LLM-guided
disagreement sampling (Section 4.2) and a Reasoning-
Aware Classifier to distill MLLM reasoning for the hardest
cases. This cascaded approach balances efficiency, accu-
racy, and interpretability.



3. Problem Statement

Multimodal fake news detection (MFND) is crucial because
misinformation often spreads through image—text pairs,
where genuine images are paired with misleading or unre-
lated text. This out-of-context pairing exploits the credibil-
ity of multimedia, making automated detection challenging.
Formally, a news item is represented as a query pair
(14, Ty), with I, the query image and T, the query text. The
task is to predict its veracity label y € true, fake. Optionally,
external evidences may be available: visual Ik = 1V¢ and
textual Tk = 1V ¢, where N, is the number of evidences.
The goal is to learn a model fy that, given (I,,T,) and (if
available) I, T ff;l, outputs g at inference.

Key challenges in this setting include: (i) the limited inter-
pretability of vision-language models, which hinders real-
world adoption; (ii) the high computational and data re-
quirements for LLM-based approaches that can address in-
terpretability; and (iii) the scarcity of large, high-quality an-
notated datasets for multimodal misinformation.

We therefore seek a data-efficient and interpretable MFND
framework that reduces annotation cost via LLM-guided
hybrid active learning and improves performance on hard
cases through a reasoning-aware classifier.

4. Methodology

Our proposed framework, Figure 1, LLM Guided Active
Learning for Multimodal Fake News Detection (Hybrid-
Net), introduces a data-efficient training paradigm that syn-
ergizes a state-of-the-art Vision-Language Model (VLM)
with the reasoning capabilities of a Multimodal Large Lan-
guage Model (MLLM). The methodology is structured into
three core stages designed to strategically minimize data an-
notation requirements while maximizing detection accuracy
and model interpretability. First, a Vision-Language Model
(VLM) particularly CLIP [13] based network that leverages
the multimodal feature alignment in shared latent space for
multimodal fake news detection; Second, a novel hybrid
active learning strategy that leverages the reasoning capa-
bilities of a Multimodal Large Language Model (MLLM)
to strategically select the most informative samples for an-
notation; and Third, finally we propose a reasoning-aware
classifier, a lightweight module trained on difficult sam-
ples to distill MLLM-generated reasoning patterns. This
multi-stage approach significantly reduces the dependency
on large-scale labeled datasets while maintaining high de-
tection accuracy and enhancing model interpretability for
hard samples.

4.1. Base-Network for MFND

In our implementation, we employ a CLIP based network,
FRAUD-Net [11], as our base network, BaseNet (fy). This
choice is motivated by its proven effectiveness and its so-

phisticated architecture, which fuses the information from
the primary image-text pair with external multimodal evi-
dence using transformer-based attention mechanisms. The
state-of-the-art performance by our base architecture is
91.1%, which is obtained by exhausting all the data points
during its training, while our proposed framework demon-
strates that high accuracy ( 90%) can be attained with less
than half of the total data.

Algorithm 1 Hybrid Active Learning with LLM-Guided
Disagreement

Require: Unlabeled pool Dy; Annotation budget B; Se-
lection fraction «; Phase transition iter. k; Pre-trained
MLLM M ; Annotation Oracle O.

Ensure: Final BaseNet parameters 6.

Initialize:

b« |a-|Dyl] > Set fixed batch size per iteration

Dgeeq < RandomSample( Dy, size)

Dy, < O(Dseed) > Annotate the initial seed set

Dy + Dy \ Dieed

141

BN e

> Initialize iteration counter

while | D | < B do
Train BaseNet fy:—1) on the current labeled set Dy,.
if - < k then > Phase 1: Uncertainty Sampling
Dyetect < arg tgg'k b H(f&(ffl) (.%‘7))
10: else > Phasej 2: iLM-Guided Disagreement
11: Ddisagree — {xj € Dy | fGU—l) (xj) 7é M(I])}
12: Dyetect +— argtop-k b LowConf(fai-1 (z5))

Zj S Ddisagree

0L 23D

13: end if

Update:
14: Dy, < Dy UO(Dgeeet) > Annotate batch and add
15: Dy + Dy \ Dgeleet > Remove from unlabeled pool
16: 14—1+1
17: end while
18: return Final trained model parameters §(—1).

4.2. MLLM Guided Active Learning

To achieve high data efficiency, we introduce a novel hybrid
active learning strategy designed to intelligently curate the
training set, as detailed in Algorithm 1. The process begins
with a small, randomly sampled and annotated seed set,
Dy, and a large pool of unlabeled data, Dy;. Our objective
is to iteratively augment Dy by selecting the most infor-
mative samples from Dy for annotation, continuing until
the size of the labeled set reaches a predefined annotation
budget, B. In each iteration, a fixed batch of b samples is
selected, where b is determined by a selection fraction « of
the initial size of the unlabeled pool.

Our hybrid strategy is temporally phased to balance
computational cost with sampling efficacy. An iteration
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Figure 1. HybridNet Framework. A hybrid active learning loop trains BaseNet using uncertainty sampling (H) and MLLM (M)
disagreement. The trained BaseNet is then combined with RAC for the final Real/Fake prediction.

counter, ¢, tracks the process. For the initial k iterations,
when the BaseNet is nascent, we employ entropy-based un-
certainty sampling. As the BaseNet matures and develops
a more reliable decision boundary, we transition to a more
sophisticated strategy based on the disagreement between
the BaseNet and the MLLM prediction.

Phase 1:
tions : < k)
During the initial iterations, the BaseNet, denoted fyii-1),
is trained on a small labeled set Dy and is thus prone
to high uncertainty. At this stage, leveraging a computa-
tionally expensive MLLM is inefficient. We therefore opt
for a classic and efficient uncertainty measure: Shannon
entropy. The BaseNet produces a predictive probability
pj = fgu-1 () for each sample x; € Dys. The associated
entropy is calculated as:

H(p;) = —pjlogy(p;) — (1 —pj)logy(1 —p;) (D)
A batch of b samples with the highest entropy scores is then
selected for annotation by the oracle.

Initial Uncertainty-Based Seeding (Itera-

Phase 2: LLM-Guided Disagreement Sampling (It-
erations : > k)

Once the BaseNet has been trained on a sufficiently diverse
set of samples, it has become a reasonably competent
classifier. Therefore, in this phase, we first construct a
disagreement set, Degigagree, cOntaining all samples from the
unlabeled pool where the BaseNet’s predicted label differs
from that of the MLLM:

Ddisagree - {xj S DU | f@(ifl)(l‘j) # M(:EJ)} (2)

The logic is that when both models agree, they are likely
converging on well-understood, less ambiguous cases. In

contrast, disagreement highlights instances where their rep-
resentations diverge, suggesting that the sample is inher-
ently more challenging or uncertain, and thus more infor-
mative for guiding the next round of training. From this
set of conflicting predictions, we prioritize the samples on
which the BaseNet is least confident. We select the top-b
samples from Dgisagree that exhibit the least confidence by
BaseNet, effectively focusing our annotation budget on the
most ambiguous and contentious cases. After each selec-
tion, the chosen batch is annotated and added to Dy, and
the iteration counter is incremented. The BaseNet is then
retrained on the newly expanded labeled set. This hybrid
design first uses a cost-effective method to rapidly improve
the nascent model, then deploys the MLLM to strategically
identify and resolve the most challenging cases, ensuring
both efficiency and the selection of high-quality, informa-
tive samples throughout the training cycle.

4.3. Reasoning-Aware Classifier

While our active learning strategy enhances the BaseNet’s
performance, certain challenging samples can still lead to
misclassifications. To address this, we introduce, an ex-
pert model designed to enhance performance on ‘“hard”
cases. As specified by its implementation, it is a sim-
ple transformer based module that fuses BaseNet’s internal
features and MLLM’s textual reasoning to further enhance
BaseNet’s performance.

Model Architecture The architecture of the Reasoning-
Aware Classifier (RAC), denoted g4, is designed to effec-
tively fuse the learned representations from the BaseNet i.e
zs, € RP7, with the explicit rationales provided by the
pre-trained MLLM (M). These rationals correspond to dif-
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Figure 2. Reasoning-Aware Classifier (RAC). [llustration of how
BaseNet features and reasoning embeddings are unified through
projection, a classification token, and a Transformer encoder be-
fore final prediction.

ferent aspects of prompt based verification process whose

embeddings r are generated by the Q qwen embedding

model. Rational embeddings used are as follows:

1. Image-Text Coherence (rin.ix): Reasoning about the
consistency between the query image and the query cap-
tion.

2. Image-Image Similarity (ripg.img): Reasoning about
the consistency between the query image to best exter-
nal evidence image.

3. Text-Text Verification (ry.x): Reasoning about the
factual veracity of the query caption to external evidence
captions.

As illustrated in Figure 2, the model begins by unifying the

BaseNet’s feature embedding, zy, and the three distinct rea-

soning embeddings from the MLLM, rime.txt, Timg-img> and

I'ixe-txt are projected into a common latent space, dy,, via sep-

arate linear transformations:

hj = Projj (kj )7 kj € {Zfe » Fimg-txt, Fimg-img > I'claim—ver}

3)

Subsequently, these projected embeddings are arranged into
a sequence, and a learnable classification token, e, € R,
is added. The resulting sequence, S € R%* % encapsulates
all available information:

S = [eclsa hfg ’ himg-lxh himg—imga htxt—txt] 4

This sequence is then processed by a Transformer Encoder,
which leverages self-attention mechanisms to model the
complex inter-dependencies between the BaseNet’s features
and the various MLLM reasoning aspects. The output em-
bedding corresponding to the ‘[CLS]* token, which serves
as an aggregated representation of the entire input, is then

passed to a final MLP head to produce the output logit ¢:

= gcls(sé))
&)

[sGs - - -, 8] = TransformerEncoder(S),

Training Objective The RAC is trained exclusively on a
set of hard samples, Dyag = {(:z:j,yj)}jj\il, where y; €
{0, 1} is the ground-truth label. These samples are curated
by identifying instances where the BaseNet trained using
our hybrid method either misclassifies or predicts with low
confidence on the remaining pool Dy; of the training data.
The parameters ¢ of the RAC are optimized by minimizing
the binary cross-entropy (BCE) loss. Given the final pre-
diction §; = o(¢;), where o is the sigmoid function, the
training objective is to find the optimal parameters ¢*:

o = argm(;nﬁ Z

(%,97) € Dhard

Lpce(yj, 0(gs(x5)))  (6)

where Lgce(y, ) = —[ylog(y) + (1 — y) log(1 — 7)]. The
training process uses the Adam optimizer and incorporates
an early stopping mechanism based on validation accuracy.

5. Experimental Evaluation

In this section, we conduct a series of experiments to rigor-
ously evaluate the proposed framework. Based on our eval-
uation, we try to address below research questions:

* RQ1: Can data-efficient training through active learning
improve the effectiveness of multimodal fake news detec-
tion (MFND)?

* RQ2: Does our LLM-guided active learning strategy of-
fer superior data efficiency compared to traditional base-
lines?

* RQ3: How effectively does the second-stage Reasoning-
Aware Classifier (RAC) improve detection accuracy on
challenging samples?

* RQ4: How do the choice of MLLM and prompt design
influence reasoning quality and framework performance?

* RQS5: How well does our proposed framework generalize
across different datasets and domains for multimodal fake
news detection?

We structure our experiments to first validate the active

learning component, followed by an in-depth analysis and

ablation of the RAC.

Dataset A popular benchmark for multimodal fake news
detection, the NewsClippings [8] dataset, is used for all
experiments. It contains real-world image—caption pairs,
where fake samples are created by pairing images and cap-
tions from different articles to form out-of-context mis-
matches. We follow the standard splits with 71k training,
7k validation, and 7k test samples.

For cross-dataset evaluation and ablations, we use the IFND



[16] dataset. While the full dataset contains more samples,
we utilize a subset of 18k with predefined train—test splits
for our experiments. Together with NewsClippings, these
datasets provide a strong foundation for benchmarking and
validating our framework.

Implementation Details We use FRAUD-Net with its of-
ficial implementation as our BaseNet, built on a frozen
CLIP [13] ViT-L/14 backbone. Active learning starts with
a randomly sampled 10% seed set, fixed across all experi-
ments. Performance is evaluated at annotation budgets of
20%, 30%, and 40%. In our Hybrid strategy, the phase
transition from uncertainty sampling to LLM-guided dis-
agreement occurs after the sixth iteration (k = 6); We also
tested multiple values of £ and found that delaying the tran-
sition to later iterations generally results in greater perfor-
mance. For cross-dataset generalization on IFND [16], we
fine-tune the BaseNet with 1,000 samples and test on the re-
maining 17,000; the Hybrid strategy follows the same setup,
with finetuning performed at the same annotation budgets.
We adopt Gemma [17] as the guiding MLLM for its strong
reasoning ability and consistent explanatory quality com-
pared to Phi [2], Xgen [9], and Florence. RAC reasoning
embeddings are generated using the pre-trained Qwen [20]
model Q. The RAC itself is a Transformer with hidden
size 512, 2 attention heads, dropout 0.3, and is trained with
Adam (1 x 10™%) and early stopping (patience 5) based on
validation accuracy.

5.1. Data-efficient training

Our first set of experiments evaluated whether active learn-
ing can improve data efficiency for MFND. We conducted
these experiments on the BaseNet, since it demonstrates
strong performance under full-data training, making it a
reliable reference point for upper-bound comparisons. As
shown in Figure 3, the entropy-based active learning curve
rises more sharply than random sampling in the early
stages, indicating that strategically chosen samples accel-
erate model learning. With only 20% of labeled data, active
learning already outperforms random sampling by nearly 3
points, and by 50% it reaches 89.5% accuracy, closely ap-
proaching the fully supervised upper bound of 91.0%. In
contrast, random sampling lags behind at the same bud-
get, yielding only 87.8%. These results confirm that active
learning saturates more quickly and that carefully selected
instances provide disproportionate training value, establish-
ing data-efficient training as both feasible and highly effec-
tive for MFND.

5.2. LLM-guided active learning

After demonstrating the benefits of data-efficient training,
we evaluated whether LLM-guided selection surpasses con-
ventional active learning heuristics (Table 1). At 10% label-

90
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Figure 3. Learning curves showing NewsClippings test accuracy
for Random sampling vs Entropy-based active learning at different
percentages of labeled training data.

ing, all methods perform similarly (=~ 83.9%), but differ-
ences widen at higher budgets: random sampling reaches
86.8% at 30%, entropy-based selection 88.5%, and MHPL
[18] 87.4% at 40%, showing that diversity-aware strategies
help but lag behind our hybrid approach.

The hybrid method consistently surpasses all baselines,
gaining 0.4-0.7 points after transitioning to LLM-guided
disagreement at iteration £k = 6 (35%). At 40% label-
ing, it achieves 89.6% versus 87.4% for random/MHPL
and 89.2% for entropy. Adding RAC further boosts ac-
curacy to 90.2%, demonstrating the benefits of combining
reasoning-aware supervision with hybrid sampling. These
results show LLM guidance effectively targets contextually
challenging samples missed by traditional uncertainty or di-
versity heuristics.

For context, SNIFFER [12] reaches 88.4% but requires full-
data training with higher computational cost, whereas our
method achieves superior performance with less than half
the labeled data, highlighting the efficiency gains of LLM-
guided active learning. Performance gains saturate near the
upper bound (=~ 91%), indicating diminishing returns at
larger budgets.

Strategy 20% 30% 40%
Random Sampling 86.2 868 874
MHPL 85.1 86.6 874
Uncertainty (Entropy) 869 885 89.2
Hybrid (Ours) 869 885 89.6
Hybrid + RAC (Ours) | 87 89.2 90.2

Table 1. Test accuracy (%) of the BaseNet trained on NewsClip-
pings [8] dataset with different active learning strategies at vary-
ing data budgets. Our Hybrid approach consistently outperforms
other data-efficient baselines and rapidly approaches the fully su-
pervised performance.
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Figure 4. Qualitative Examples of RAC. Challenging NewsClip-
pings samples where FRAUDNet and HybridNet fail, but RAC
corrects the prediction using reasoning cues.

5.3. Efficacy of Reasoning-Aware Classifier (RAC)
on challenging samples

The previous subsection showed that data-efficient train-
ing and hybrid active learning allow BaseNet to approach
fully supervised performance using only a fraction of the
labeled data. Nevertheless, some hard samples remain con-
sistently misclassified or assigned low confidence. Standard
networks provide little insight into these failures, motivat-
ing the use of large language models (LLMs), which excel
at generating task-specific reasoning.

Training LLMs directly for every use case is computation-
ally prohibitive. Instead, we extract reasoning features from
a pre-trained LLM and fuse them with BaseNet embeddings
to train a lightweight Reasoning-Aware Classifier (RAC).
Trained on ~4000 hard samples (Dpsq), RAC achieves
83.9% accuracy on NewsClippings (Table 2) using only 5%
labeled data, surpassing the 5% random BaseNet (79.1%)
and nearly matching FraudNet at 10% random (84.1%), un-
derscoring the strong data efficiency of our reasoning-based
approach.

At inference, RAC acts as a second-stage verifier on low-
confidence BaseNet predictions. With a 0.8 confidence
threshold, 63 uncertain samples were flagged: BaseNet
alone achieved 58% accuracy, while RAC improved this to
70%. Applied on top of the best Hybrid BaseNet (40% la-
beled data), RAC provides an additional 0.6% gain, reach-
ing 90.2% accuracy—close to the fully supervised upper
bound of 91.1%—while using only 45% labeled data (40%
+ 5%). Qualitative examples in Figure 4 further highlight
RAC'’s ability to resolve inconsistencies that mislead other
models.

To analyze the role of different inputs, we conducted an ab-
lation study (Table 2) with three RAC variants: (i) BaseNet
features only, (ii) LLM reasoning embeddings only, and (iii)
the full model combining both. While each feature set alone
already matches or slightly surpasses Hybrid BaseNet, the
full model achieves the highest accuracy of 90.2%, con-
firming the complementary nature of learned representa-
tions and structured reasoning.

Model Configuration Overall Accuracy (%)

BaseNet (Hybrid @ 40%) 89.6
FraudNet (@ 10%) 84.1
RAC 83.9
BaseNet + RAC (BaseNet Features Only) 90.02
BaseNet + RAC (Reasoning Features Only) 90.08
BaseNet + RAC (Full Model) 90.2
FraudNet [11] 91.1
FraudNet + RAC 91.5

Table 2. Ablation study on the Reasoning-Aware Classifier (RAC).
Combining BaseNet and reasoning features gives the best gains
(90.2%)

Overall Performance Boost Table 2 shows that the cas-
caded model (‘BaseNet + RAC’) consistently improves over
the Hybrid BaseNet, raising accuracy from 89.6% to 90.2%
by leveraging both learned features and LLM reasoning.
The ablation confirms that each component contributes: us-
ing only BaseNet features (90.02%) or only reasoning fea-
tures (90.08%) already matches or slightly surpasses the
standalone BaseNet, while their combination delivers the
strongest gains. Notably, RAC trained with only 5% la-
beled data already achieves 83.9%, which is comparable to
FraudNet trained on 10% data (84.1%) on the NewsClip-
pings test set, highlighting its data efficiency. Finally, when
RAC is applied on top of the fully trained FraudNet [11],
it increases accuracy from 91.1% to 91.5%, demonstrating
RAC's ability to correct challenging cases and push perfor-
mance beyond the baseline upper bound.

5.4. Impact of MLLM Choice and Prompt Design

To address RQ4, we evaluated multiple MLLMs (Gemma,
Phi, Xgen, Florence) within our reasoning pipeline, which
applies three complementary checks:

1. Query image vs. query text and query image vs. ev-
idence image for entity, event, and sentiment consis-
tency.

2. Query text vs. evidence texts for factual verification
and alignment.

Each component uses a dedicated prompt, and their outputs

are combined into a final classification and explanation.

For the hybrid method, this reasoning-based prediction

is compared with BaseNet outputs, with mismatches



prioritized for labeling and RAC training.

We systematically compared MLLMs by reasoning quality
and model size. Gemma [17] (12B) consistently produced
the most precise and contextually accurate reasoning,
correctly identifying mismatches and aligning with evi-
dence. By contrast, Xgen, Florence, and smaller variants of
Phi [2] often generated generic or incorrect explanations.
Gemma’s detailed reasoning made it the clear choice,
and it was used in all subsequent hybrid AL and RAC
experiments.

5.5. Cross-Data Generalization

We evaluated the robustness of our approach on the IFND
dataset, a collection of real-world news image-text pairs
from the Indian news domain, which has a distribution
different from NewsClippings.

Testing the fully supervised FraudNet model in a zero-shot
(Figure 5) setting yielded only 58.3% accuracy, high-
lighting its poor cross-domain generalization. Finetuning
FraudNet on a small subset of 1,000 IFND training samples
(leaving 17,000 for testing) substantially improved perfor-
mance to 89.4% overall, showing that limited adaptation
enables effective generalization.
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Figure 5. Cross-dataset performance comparison of Zero-shot
BaseNet, HybridNet (40% data), and Full fine-tuning (100% data).
Accuracy and training data usage are shown side by side.

To further reduce labeling cost, we applied data-efficient
sampling strategies using the same hybrid active learning
setup as in NewsClippings. Starting with a 10% random
seed and incrementally adding 5% per iteration up to 40%,
Table 3 shows that our hybrid method consistently outper-
forms Random, Entropy, and MHPL, achieving 88.9% ac-
curacy at the 40% budget. Notably, with only ~400 labeled
samples (40% budget), our method already approaches the
performance obtained by finetuning FraudNet on the full
1,000-sample training subset, demonstrating strong data ef-
ficiency and cross-domain generalizability. We did not fur-
ther experiment with RAC on top of this setup due to the

limited number of labeled samples available for training the
reasoning-aware classifier.

Strategy 20% 30% 40%
Random 782 827 864
Entropy 73.6 803 879
MHPL [18] 754 83.8 86.8
Hybrid (Ours) | 73.6 84.1 88.9

Table 3. Test accuracy (%) on IFND [16] dataset for various active
learning strategies across different data budgets. Hybrid sampling
consistently identifies informative samples, achieving competitive
accuracy with fewer labeled instances.

5.6. Computational Requirements

All experiments were conducted on a single NVIDIA
A6000 GPU (49 GB VRAM). The active learning phase is
lightweight, with BaseNet training requiring only 3 GB of
GPU memory. The first 8 iterations (batch size 16) com-
plete within 4-5 hours, with training time scaling linearly
as data increases. The only resource-intensive step is the
one-time generation of MLLM reasonings for sample selec-
tion and RAC training, performed using Gemma-12B with
vLLM (44 GB VRAM, 4 days for 70k NewsClippings sam-
ples).

Inference is highly efficient: the cascaded
BaseNet+RAC model runs on 6 GB of VRAM, en-
abling deployment on standard GPUs. Compared to prior
methods such as SNIFFER [12], which requires 4xA100
(40 GB) GPUs, our approach is far more practical. By
leveraging open-source Gemma for reasoning, it also
avoids the recurring API costs of proprietary models,
providing a scalable, single-GPU solution with competitive
performance.

6. Conclusion

In this work, we proposed a novel MLLM-guided hybrid ac-
tive learning framework for multimodal fake news detection
(MFND), effectively combining a state-of-the-art CLIP-
based Vision-Language Model (FRAUD-Net) with the rea-
soning capabilities of a Multimodal Large Language Model.
Our approach improves data efficiency and interpretability
by selecting informative samples through uncertainty and
disagreement-based sampling, and enhances detection on
challenging cases via a lightweight Reasoning-Aware Clas-
sifier that leverages LLM explanations. Extensive exper-
iments on the NewsClippings benchmark show accuracy
comparable to fully supervised baselines using less than
half the labeled data. Furthermore, cross-dataset evaluation
on the IFND dataset demonstrates that our hybrid sampling
strategy maintains strong performance and robust general-
ization, achieving near full-data finetuning accuracy using



only a fraction of labeled samples. The proposed frame-
work offers a scalable, efficient, and interpretable solution
for real-world multimodal misinformation detection, en-
abling more trustworthy and resource-conscious fake news
detection systems.
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